Math Review Session

CS5785, 2019 Fall

Yichun Hu, Xiaojie Mao

Cornell Tech, Cornell Unviersity

Table of contents

1. Linear Algebra
2. Calculus
3. Probability
4. Resources

Linear Algebra

Matrix and Vector

- Vector:

$$
a=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad b=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

- Matrix:

$$
A=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

- Vectorize a matrix:

$$
\operatorname{vec}(A)=\left[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\vdots \\
9
\end{array}\right]
$$

Vector Operation

For two column vectors $v, u \in \mathbb{R}^{n}$,

- Inner product: $u \cdot v=u^{\top} v=\sum_{i=1}^{n} u_{i} v_{i}$.
- Orthogonal vectors: $u \cdot v=0$.
- Norm: $\|u\|=\sqrt{u^{\top} u}=\sqrt{\sum_{i=1}^{n} u_{i}^{2}}$.
- Euclidean distance: $d(u, v)=\|u-v\|=\sqrt{\sum_{i=1}^{n}\left(u_{i}-v_{i}\right)^{2}}$.

Matrix Operation

- Transpose. For $A \in \mathbb{R}^{m \times n}, A^{\top}$ is a $n \times m$ matrix:

$$
\left(A^{\top}\right)_{i j}=A_{j i} .
$$

- Matrix addition. For $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times n}, C=A+B$ is a $m \times n$ matrix: for $1 \leq i \leq m$ and $1 \leq j \leq n$,

$$
C_{i j}=A_{i j}+B_{i j}
$$

- Matrix Multiplication. For $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C=A B$ is a $m \times p$ matrix: for $1 \leq i \leq m$ and $1 \leq j \leq n$,

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}=A_{i,:} \cdot B_{:, j}
$$

Matrix Operation

- Matrix inverse. If A is square ($n \times n$), and invertible, then A^{-1} is the unique $n \times n$ matrix such that

$$
A A^{-1}=A^{-1} A=I
$$

- Matrix trace. If A is square $(n \times n)$, then its trace is

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i j} .
$$

- Frobenius norm: for a matrix $A \in \mathbb{R}^{m \times n}$,

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A^{\top} A\right)}=\|\operatorname{vec}(A)\| .
$$

Properties of Matrix Operation

- Transpose:
- $(A B)^{\top}=B^{\top} A^{\top}$.
- $(A B C)^{\top}=C^{\top} B^{\top} A^{\top}$.
- $(A+B)^{\top}=A^{\top}+B^{\top}$.
- Multiplication:
- Associative: $(A B) C=A(B C)$.
- Distributive: $(A+B) C=A C+B C$.
- Non-commutative: $A B \neq B A$ in general.

Properties of Matrix Operation

- Inverse:
- $(A B)^{-1}=B^{-1} A^{-1}$.
- $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.
- $\left(A^{-1}\right)^{-1}=A$.
- $\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}$.
- Trace:
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
- $\operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A)$.

Special matrices

For $A \in \mathbb{R}^{n \times n}$,

- Diagonal matrix: $A_{i j}=0$ for any $i \neq j$.
- Symmetric (Hermitian) matrix: $A=A^{\top}$ or $A_{i j}=A_{j i}$.
- Orthogonal matrix: $A^{\top}=A^{-1}$.
- $A A^{\top}=A^{\top} A=I$.
- Rows and Columns are orthogonal unit vectors, namely, for $i \neq j$,

$$
A_{i,:} \cdot A_{j,:}=0, \quad A_{:, i} \cdot A_{:, j}=0
$$

and for any i,

$$
A_{i,:} \cdot A_{i,:}=1, \quad A_{:, i} \cdot A_{:, i}=1
$$

- Positive semidefinite matrix: for any $x \in \mathbb{R}^{n}$ with $x \neq 0$,

$$
x^{\top} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{i} x_{j} \geq 0
$$

Eigenvalues and Eigenvectors

For matrix $A \in \mathbb{R}^{n \times n}$, and nonzero vector $u \in \mathbb{R}^{n}(u \neq 0)$ such that

$$
A u=\lambda u,
$$

u is an eigenvector of A, and λ is the corresponding eigenvalue.

Spectral decomposition theorem

If $A \in \mathbb{R}^{n \times n}$ is a real symmetric matrix, then

$$
A=U \wedge U^{\top} \Leftrightarrow A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top} \Leftrightarrow U^{\top} A U=\Lambda
$$

where

- $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix whose columns are eigenvectors of A, i.e., $U_{:, i}$ and $U_{:, j}$ are orthogonal unit eigenvectors for $i \neq j$.
- Λ is a diagonal matrix whose entries are the corresponding eigenvalues.

Remark:

- $\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$.
- Real symmetric A is positive semidefinite $\Leftrightarrow \lambda_{i} \geq 0$ for any $i=1, \ldots, n$.

Singular Value Decomposition (SVD)

For $A \in \mathbb{R}^{m \times n}$, its singular value decomposition is

$$
A=U \Sigma V^{\top} \Leftrightarrow A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top} \Leftrightarrow U^{\top} A V=\Sigma
$$

where

- $U \in \mathbb{R}^{m \times r}$ is an orthogonal matrix whose columns $\left\{u_{i}\right\}_{i=1}^{r}$ are the left singular vectors;
- $V \in \mathbb{R}^{r \times n}$ is an orthogonal matrix whose columns $\left\{v_{i}\right\}_{i=1}^{r}$ are the right singular vectors;
- $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix whose diagonal elements $\left\{\sigma_{i}\right\}_{i=1}^{r}$ are singular values.

Singular Value Decomposition

Remark:

- r is the rank of matrix A;
- The maximum singular value $\sigma_{\max }(A)$ is called the spectral norm of A, which we denote as $\|A\|_{2}$.
- Connection between SVD and eigen-decomposion.

$$
\begin{aligned}
& A=U \Sigma V^{\top} \Rightarrow A A^{\top}=U \Sigma^{2} U^{\top}, \\
& A=U \Sigma V^{\top} \Rightarrow A^{\top} A=V \Sigma^{2} V^{\top} .
\end{aligned}
$$

Thus

- The columns of U are eigenvectors of $A A^{\top}$, and the columns of V are eigenvectors of $A^{\top} A$;
- $\sigma_{i}^{2}(A)=\lambda_{i}\left(A A^{\top}\right)=\lambda_{i}\left(A^{\top} A\right)$.

Calculus

Univariate Calculus

- Polynomial: $\frac{\partial}{\partial x} x^{n}=n x^{n-1}$.
- Exponential: $\frac{\partial}{\partial x} \exp (x)=\exp (x)$.
- Logarithm: $\frac{\partial}{\partial x} \log (x)=\frac{1}{x}$.
- Sum: $\frac{\partial}{\partial x}(f(x)+g(x))=\frac{\partial}{\partial x} f(x)+\frac{\partial}{\partial x} g(x)$.
- Multiplication: $\frac{\partial}{\partial x}(f(x) \cdot g(x))=f(x) \frac{\partial}{\partial x} g(x)+g(x) \frac{\partial}{\partial x} f(x)$.
- Chain Rule: $\frac{\partial}{\partial x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.

Multivariate Calculus

Let f be a function of $x_{1}, x_{2}, \ldots, x_{n}$.

- Partial derivative $\frac{\partial}{\partial x_{i}} f\left(x_{1}, \ldots, x_{n}\right)$: treat other variables as constants and take derivative w.r.t. x_{i}.

$$
\frac{\partial}{\partial x} f:=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\cdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right), \frac{\partial}{\partial x^{\top}} f:=\left(\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

- Gradient of f with respect to $x: \nabla_{x} f:=\frac{\partial}{\partial x} f$.
- Hessian matrix of $f: \mathcal{H}$ is a $n \times n$ matrix with $\mathcal{H}_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f$, or

$$
\mathcal{H}=\frac{\partial^{2}}{\partial x \partial x^{\top}} f
$$

Let $f=\left(f_{1}, \ldots, f_{m}\right)$ be a multivariate vector function of x_{1}, \ldots, x_{n}.

- Jacobian matrix of $f: \mathcal{J}$ is a $m \times n$ matrix with $\mathcal{J}_{i j}=\frac{\partial f_{i}}{\partial x_{j}}$. The i-th row of \mathcal{J} is $\frac{\partial}{\partial x^{\top}} f_{i}$.

Multivariate Calculus Rules

Here \mathbf{a} and \mathbf{A} are vector/matrix that do not depend on $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$.

- $\frac{\partial}{\partial x} \mathbf{a}=\mathbf{0}$;
- $\frac{\partial}{\partial x} \mathbf{a}^{\top} \mathbf{x}=\frac{\partial}{\partial x} \mathbf{x}^{\top} \mathbf{a}=\mathbf{a}$;
- $\frac{\partial}{\partial x}\left(\mathbf{x}^{\top} \mathbf{a}\right)^{2}=2 \mathbf{a a}^{\top} \mathbf{x}$;
- $\frac{\partial}{\partial x} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top}$;
- $\frac{\partial}{\partial x} \mathbf{x}^{\top} \mathbf{A}=\mathbf{A}$;
- $\frac{\partial}{\partial x} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\left(\mathbf{A}^{\top}+\mathbf{A}\right) \mathbf{x}$.

For a detailed multivariate derivatives list, see
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

Example: Least Squares

Lets apply the equations to derive the least squares equations. Suppose we are given matrices $A \in \mathbb{R}^{m \times n}$ (for simplicity we assume A is full rank so that $\left(A^{\top} A\right)^{-1}$ exists) and a vector $b \in \mathbb{R}^{m}$ such that $b \notin \mathcal{R}(A)$. In this situation we will not be able to find a vector $x \in \mathbb{R}^{n}$ such that $A x=b$, so instead we want to find a vector x such that $A x$ is as close as possible to b, as measured by the square of the Euclidean norm $\|A x-b\|_{2}^{2}$.

Using the fact that $\|x\|_{2}^{2}=x^{\top} x$, we have

$$
\|A x-b\|_{2}^{2}=(A x-b)^{\top}(A x-b)=x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b .
$$

Taking the gradient with respect to x we have
$\nabla_{x}\left(x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b\right)=\nabla_{x} x^{\top} A^{\top} A x-\nabla_{x} 2 b^{\top} A x+\nabla_{x} b^{\top} b=2 A^{\top} A x-2 A^{\top} b$.
Setting this last expression equal to zero and solving for x gives the normal equations $x=\left(A^{\top} A\right)^{-1} A^{\top} b$.

Probability

Sample space

- Sample space Ω is the set of all possible outcomes of a random experiment;
- Event A is a subset of Ω, and the collection of all possible events is denoted as \mathcal{F};
- Probability measure is a function $P: \mathcal{F} \rightarrow \mathbb{R}$ that maps an event into a real number which indicates the chance at which this event happens in the experiment.
- A and B are independent events if

$$
P(A \cap B)=P(A) P(B)
$$

Example: consider tossing a six-sided die,

- $\Omega=\{1,2,3,4,5,6\} ;$
- $A=\{1,2,3,4\} \subset \Omega$ is an event;
- $P(A)=\frac{4}{6}$ for an even die.

Random Variable

- A random variable X is a function $X: \Omega \rightarrow \mathbb{R}$.
- Discrete random variable can only take countably many values, and

$$
P(X=x)=P(\{w: X(w)=x\}) .
$$

- Continuous random variable can take uncountably many values, and

$$
P(a \leq X \leq b)=P(\{w: a \leq X(w) \leq b\}) .
$$

Example: If the die gives value larger than 4 , we set $X=1$, and otherwise $X=0$.

- $P(X=1)=P(\{5,6\})=\frac{2}{6}$;
- $P(X=0)=P(\{1,2,3,4\})=\frac{4}{6}$.

Distribution

- A cumulative distribution function (CDF) of a random variable X (either continuous or discrete) is a function $F_{X}: \mathbb{R} \rightarrow[0,1]$ such that

$$
F_{X}(x)=P(X \leq x) .
$$

- A probability mass function (PMF) of a discrete random variable X is a function $p_{X}: \mathbb{R} \rightarrow[0,1]$ such that

$$
p_{X}(x)=P(X=x) .
$$

- A probability density function (PDF) of a continuous random variable is a function $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$ given by the derivative of CDF:

$$
f_{X}(x)=\frac{\partial F_{X}(x)}{\partial x} .
$$

As a result,

$$
P(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x
$$

Expectation

- For a discret random variable X with PMF p_{X} and an aribitrary function $g: \mathbb{R} \rightarrow \mathbb{R}, g(X)$ is also a random variable whose expectation is given by

$$
\mathbb{E}[g(X)]=\sum_{x} p_{X}(x) g(x)
$$

- For a continuous random variable X with PDF $f_{X}, g(X)$ is also a random variable whose expectation is given by

$$
\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

- For two functions g_{1} and g_{2},

$$
\mathbb{E}\left[g_{1}(X)+g_{2}(X)\right]=\mathbb{E}\left[g_{1}(X)\right]+\mathbb{E}\left[g_{2}(X)\right]
$$

Variance

The variance of a random variable X is

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2},
$$

and the associated standard deviation is

$$
\sigma(X)=\sqrt{\operatorname{Var}[X]} .
$$

Exercise: uniform distribution

Consider $X \sim$ uniform $(0,1)$ whose PDF is

$$
f_{X}(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

What's the expectation and variance of X ?
Hint:

- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$;
- $\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}$.

Common distributions

- Normal distribution: $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ has PDF

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\} .
$$

- $\mathbb{E}[X]=\mu$ and $\operatorname{Var}[X]=\sigma^{2}$.
- Bernoulli distribution: $X \sim \operatorname{Bernoulli}(p)$ with $0 \leq p \leq 1$ has PMF

$$
P_{X}(x)=\left\{\begin{array}{r}
p, \\
1-p, \\
1-x=0
\end{array}\right.
$$

- $\mathbb{E}[X]=p$ and $\operatorname{Var}[X]=p(1-p)$.

Joint distributions

- For two random variables X and Y, their joint cumulative distribution function is

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)
$$

- For two discrete random variables X and Y, their joint probability mass function is

$$
p_{X, Y}(x, y)=P(X=x, Y=y)
$$

- For two continuous random variable X and Y, their joint probability density function is

$$
f_{X, Y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y}
$$

so that for a set $A \in \mathbb{R}^{2}$ and a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
P((X, Y) \in A) & =\iint_{(x, y) \in A} f_{X, Y}(x, y) d x d y \\
\mathbb{E}[g(X, Y)] & =\iint g(x, y) f_{X, Y}(x, y) d x d y
\end{aligned}
$$

Independence

- Random variables X, Y are independent if for any possible values x, y

$$
\begin{aligned}
& f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y), \text { for continuous } X, Y \\
& \text { or } p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y), \text { for discrete } X, Y .
\end{aligned}
$$

- For any set $A=\left\{(x, y): x \in A_{1}, y \in A_{2}\right\} \subset \mathbb{R}^{2}$, independent random variables X, Y satisfy that

$$
P((X, Y) \in A)=P\left(X \in A_{1}\right) P\left(Y \in A_{2}\right) .
$$

or events $\left\{w: X(w) \in A_{1}\right\}$ and $\left\{w: Y(w) \in A_{2}\right\}$ are independent events for any A_{1} and A_{2}.

Exercise: Independence

For example, consider toss two coins consecutively, and $X_{1}=1$ if the first coin heads up, otherwise $X_{1}=0 ; X_{2}=1$ if the second coin heads up, otherwise $X_{2}=0$.

- $\Omega=\{(T, T),(H, H),(T, H),(H, T)\}$.
- $P\left(X_{1}=1, X_{2}=1\right)=P(\{(H, H)\})=\frac{1}{4}$;
- $P\left(X_{1}=1\right)=P(\{(H, T),(H, H)\})=\frac{1}{2}$;
- $P\left(X_{2}=1\right)=P(\{(T, H),(H, H)\})=\frac{1}{2}$.

Thus

$$
P\left(X_{1}=1, X_{2}=1\right)=\frac{1}{4}=\frac{1}{2} \times \frac{1}{2}=P\left(X_{1}=1\right) P\left(X_{2}=1\right) .
$$

Similarly, we can show that

$$
\begin{aligned}
& P\left(X_{1}=1, X_{2}=0\right)=P\left(X_{1}=1\right) P\left(X_{2}=0\right) \\
& P\left(X_{1}=0, X_{2}=1\right)=P\left(X_{1}=0\right) P\left(X_{2}=1\right) \\
& P\left(X_{1}=0, X_{2}=0\right)=P\left(X_{1}=0\right) P\left(X_{2}=0\right)
\end{aligned}
$$

Conditional Probability

Let A, B be two events.

- The conditional probability of A given B is defined as:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

- If A is independent of B, we have $P(A \mid B)=P(A)$, as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A) .
$$

- Bayes Rule:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Chain Rule:

$$
\begin{gathered}
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right) \\
=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2} \cap A_{1}\right) \ldots P\left(A_{n} \mid A_{n-1} \cap \cdots \cap A_{1}\right) .
\end{gathered}
$$

Example: conditional probability

Consider toss a die once, and we define events
$A=\{$ The value is larger than 4$\}, B=\{$ The value is larger than 2$\}$.
Then

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{P(\{5,6\} \cap\{3,4,5,6\})}{P(\{3,4,5,6\})} \\
& =\frac{\frac{2}{6}}{\frac{4}{6}}=\frac{1}{2} .
\end{aligned}
$$

Conditional Distribution

Conditional Density. The conditional probability density function of continuous random variable X given $Y=y$ is

$$
f_{X}(x \mid Y=y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

Conditional Expectation. The conditional expectation of X given $Y=y$ is

$$
\mathbb{E}(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X}(x \mid Y=y) d x \triangleq g(y)
$$

Conditional Variance. The conditional variance of random variable X given $Y=y$ is

$$
\operatorname{Var}[X \mid Y=y]=\mathbb{E}\left[(X-\mathbb{E}(X \mid Y=y))^{2} \mid Y=y\right] \triangleq h(y) .
$$

Both $\mathbb{E}[X \mid Y]$ and $\operatorname{Var}(X \mid Y)$ are random variables, and their distributions are determined by the distribution of Y.

Properties of Conditional Distributions

Iterated Expectation. Recall that $\mathbb{E}(X \mid Y)$ is a function of Y, i.e., a random variable. The law of iterative expectation states that

$$
\mathbb{E}[\mathbb{E}(X \mid Y)]=\mathbb{E}(X) .
$$

Law of Total Variance. Recall that $\mathbb{E}(X \mid Y)$ and $\operatorname{Var}(X \mid Y)$ are both random variables that are functions of Y. We have

$$
\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}[\mathbb{E}(X \mid Y)] .
$$

Example: conditional distribution

Assume we throw two six-sided dice.

- What is the probability that the total of two dice will be greater than 8 given that the first die is a 6 ?
- What is the expectation of the total of two dice given that the first die is a 6 ?
- What is the variance of the total of two dice given that the first die is a 6 ?

Example: conditional distribution

We use X_{1} to denote the value for the first die and X_{2} the value for the second die.

- What is the probability that the total of two dice will be greater than 8 given that the first die is a 6 ?

$$
\begin{aligned}
P\left(X_{1}+X_{2}>8 \mid X_{1}=6\right) & =\frac{P\left(X_{1}+X_{2}>8, X_{1}=6\right)}{P\left(X_{1}=6\right)} \\
& =\frac{P\left(X_{1}=6, X_{2}>2\right)}{P\left(X_{1}=6\right)} \\
& =\frac{P\left(X_{1}=6\right) P\left(X_{2}>2\right)}{P\left(X_{1}=6\right)} \\
& =P\left(X_{2}>2\right)=\frac{4}{6}
\end{aligned}
$$

Example: conditional distribution

- What is the expectation of the total of two dice given that the first die is a 6 ?
Given that $X_{1}=6, X_{1}+X_{2}$ can be $7,8,9,10,11,12$, all with probability $\frac{1}{6}$. Thus

$$
\mathbb{E}\left[X_{1}+X_{2} \mid X_{1}=6\right]=7 * \frac{1}{6}+\cdots+12 * \frac{1}{6}=\frac{57}{6} .
$$

- What is the variance of the total of two dice given that the first die is a 6 ? Answer: $\frac{105}{36}$.

Law of large number

Consider i.i.d random variables X_{1}, \cdots, X_{n}, i.e., independent random variables with identical distributions, and an arbitrary function g.
Suppose the common expectation $\mathbb{E}\left[g\left(X_{1}\right)\right]<\infty$ and common variance $\operatorname{Var}\left[g\left(X_{1}\right)\right]<\infty$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)=\mathbb{E}\left[g\left(X_{1}\right)\right] .
$$

Actually

- $\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)\right]=\mathbb{E}\left[g\left(X_{1}\right)\right]$.
- $\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)\right]=\frac{1}{n} \operatorname{Var}[g(X)]$.

Resources

Resources

- Linear algebra:
http://cs229.stanford.edu/summer2019/cs229-linalg.pdf
- Matrix calculus: https:
//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- Probability:
http://cs229.stanford.edu/summer2019/cs229-prob.pdf and All of Statistics by Larry Wasserman.

