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Linear Algebra



Matrix and Vector

e Vector:
1
a=|2|, b:[l 2 3}
3
e Matrix:
1 4 7
A=12 5 8
3 6 9
e Vectorize a matrix: o
1
2
3
vec(A) = |4




Vector Operation

For two column vectors v, u € R”,

Inner product: u-v=u'v=>" uv.

Orthogonal vectors: v-v = 0.

Norm: |ul| = VuTu=/>" 2

Euclidean distance: d(u,v) = ||u— v| = /> 7 (ui — vi)2.



Matrix Operation

e Transpose. For A€ R™*" AT is a n x m matrix:
(AT)j = Aji.

e Matrix addition. For Ac R™" BeR™" C=A+Bisamxn
matrix: for 1 </ <mand1<j<n,

C,'J':A,'J'+B,'j.

e Matrix Multiplication. For A€ R™*" B e R"™P, C=ABisa
m x p matrix: for1</<mand1<;<n,

Cij = ZAikBkj — A;.- B:J
=il



Matrix Operation

e Matrix inverse. If A is square (n x n), and invertible, then A= is
the unique n X n matrix such that

AAT = ATTA= .

e Matrix trace. If A is square (n x n), then its trace is

= zn: Aji.
i=1

e Frobenius norm: for a matrix A € R™*",

ZZA = \/tr(ATA) = | vec (A)].

i=1 j=1

|AllF =



Properties of Matrix Operation

e Transpose:
e (AB)T =BTAT.
e (ABC)" =C"BTAT.
e (A+B)T =AT +B".
e Multiplication:
e Associative: (AB)C = A(BC).
e Distributive: (A+ B)C = AC + BC.
e Non-commutative: AB # BA in general.



Properties of Matrix Operation

e Inverse:
e (AB)'=B7tA"L.
e (ABC)'=C7'B AL

o (ATHI=A
° (A—I)T — (AT)—I_
e Trace:

o tr(AB) = tr(BA).
e tr(ABC) = tr(CAB) = tr(BCA).



Special matrices

For A e R"™",

e Diagonal matrix: A; =0 for any i # j.
e Symmetric (Hermitian) matrix: A= AT or A; = Aj;.
e Orthogonal matrix: AT = A~%.
e AAT=ATA=1.
e Rows and Columns are orthogonal unit vectors, namely, for i # j,

Ai. A, =0, A A;=0,

and for any i,
Ai,: . Ai,: - 17 A:,i . A:,i = i,

e Positive semidefinite matrix: for any x € R"” with x # 0,

x Ax = z": iA;jx,-xj > 0.

i=1 j=1



Eigenvalues and Eigenvectors

For matrix A € R"*", and nonzero vector u € R" (u # 0) such that
Au = \u,

u is an eigenvector of A, and A is the corresponding eigenvalue.



Spectral decomposition theorem

If A€ R"™ " is a real symmetric matrix, then

A=UNT & A=) Nuu! < UTAU=A

i=1
where

e U € R"™" is an orthogonal matrix whose columns are eigenvectors
of A, i.e,, U.; and U.; are orthogonal unit eigenvectors for i # j.
e Ais a diagonal matrix whose entries are the corresponding

eigenvalues.

Remark:
o tr(A)=>"" A\
e Real symmetric A is positive semidefinite < \; > 0 for any
i=1,...,n.
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gular Value Decomposition (SVD)

For A € R™*" its singular value decomposition is

r
A=ULV' & A=) oy < UTAV =%

i=1
where

e U € R™ " is an orthogonal matrix whose columns {u;}_; are the
left singular vectors;

e VV € R™" is an orthogonal matrix whose columns {v;}/_; are the
right singular vectors;

e Y € R™" is a diagonal matrix whose diagonal elements {o;}/_, are

singular values.
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Singular Value Decomposition

Remark:

e r is the rank of matrix A;

e The maximum singular value o.x(A) is called the spectral norm of
A, which we denote as [|A|2.

e Connection between SVD and eigen-decomposion.
A=UZVT = AAT = US2UT,
A=UzV' = ATA=VvE2VT.

Thus

e The columns of U are eigenvectors of AAT, and the columns of V
are eigenvectors of AT A;
o o2(A) = N(AAT) = \(ATA).

12



Calculus




Univariate Calculus

Polynomial: @x” = nx"=L.

Exponential: —exp(x) xp(x).

Logarithm: 2 log(x) =

Sum: Z-(f(x) + g(x)) = aif(XH%g(X)
) ="1

Multiplication: d@(f(x) g(x

Chain Rule: %(f(g(x))) = f'(g(x)) - g'(

X
~—
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Multivariate Calculus

Let f be a function of xq1,x2,..., X,
Xn): treat other variables as

e Partial derivative %f(xl,
constants and take derivative w.r.t. x;.
of

of of
aoo D

d a9
o= | arf = (&
X of X
Oxp
e Gradient of f with respect to x: V,f = 8%)(.
e Hessian matrix of f: # is a n x n matrix with H;; = %;X_f, or
fesy
32
H=—7=F.
OxOxT
Let f = (f1,..., fn) be a multivariate vector function of xi, ..., x,.
of;
o The

e Jacobian matrix of f: J is a m x n matrix with Jj; =

i-th row of J is a%f,u

14



Multivariate Calculus Rules

Here a and A are vector/matrix that do not depend on x = (xg,...,x,)T.
&) o —
® xa= 0
) o)

axaTx = axTa =a;

° a%(xTa)2 = 2aaTx;

2] _ AT

° gAx =A;

o ZxTA =A;

o ZxTAx= (AT +A)x.
For a detailed multivariate derivatives list, see
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.
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Example: Least Squares

Lets apply the equations to derive the least squares equations. Suppose
we are given matrices A € R™*" (for simplicity we assume A is full rank
so that (AT A)~1 exists) and a vector b € R™ such that b & R(A). In this
situation we will not be able to find a vector x € R” such that Ax = b,
so instead we want to find a vector x such that Ax is as close as possible
to b, as measured by the square of the Euclidean norm ||Ax — b||3.

Using the fact that ||x||3 = xTx, we have
||[Ax — b||3 = (Ax — b)T(Ax — b) = xTATAx — 2bTAx + bTb.
Taking the gradient with respect to x we have
Vx(XxTATAx—2bTAx+bTb) = V xTATAx—V,2bT Ax+VbTb = 2ATAx—2AT b.

Setting this last expression equal to zero and solving for x gives the
normal equations x = (ATA)~1ATh.
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Probability




Sample space

e Sample space (2 is the set of all possible outcomes of a random
experiment;

e Event A is a subset of 2, and the collection of all possible events is
denoted as F;

e Probability measure is a function P : 7 — R that maps an event
into a real number which indicates the chance at which this event
happens in the experiment.

e A and B are independent events if

P(AN B) = P(A)P(B).
Example: consider tossing a six-sided die,

O Q = {11273747576};

e A=1{1,2,3,4} C Qs an event;

e P(A) = 2 for an even die.
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Random Variable

e A random variable X is a function X : Q — R.

e Discrete random variable can only take countably many values, and
P(X =x) = P({w : X(w) = x}).
e Continuous random variable can take uncountably many values, and
P(a< X <b)=P{w:a< X(w)<b}).

Example: If the die gives value larger than 4, we set X =1, and
otherwise X = 0.

e P(X=1)=P({5,6}) =
o P(X =0)=P({1,2,3,4}

)=
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Distribution

e A cumulative distribution function (CDF) of a random variable X
(either continuous or discrete) is a function Fx : R — [0, 1] such that

Fx(x) = P(X < x).

e A probability mass function (PMF) of a discrete random variable
X is a function px : R — [0, 1] such that

px(x) = P(X = x).

e A probability density function (PDF) of a continuous random
variable is a function fx : R — R given by the derivative of CDF:

an(X)
Ox

fx(X) =

As a result,
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Expectation

e For a discret random variable X with PMF px and an aribitrary
function g : R — R, g(X) is also a random variable whose
expectation is given by

Elg(X)] =Y _ px(x)g(x).

e For a continuous random variable X with PDF fx, g(X) is also a
random variable whose expectation is given by

Ble(x)] - | " e(x)hclx)dx.

— 00

e For two functions g; and g»,

Elg1(X) + g2(X)] = E[g1(X)] + E[g2(X)]
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Variance

The variance of a random variable X is
Var[X] = E[(X — E[X])?] = E[X?] — (E[X])?,
and the associated standard deviation is

o(X) = /Var[X].
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Exercise: uniform distribution

Consider X ~ uniform(0,1) whose PDF is

() 1, 0<x<1
X)) =
x 0, otherwise

What's the expectation and variance of X7

Hint:

e E[X] = ffooo xfx (x)dx;
e Var[X] = E[X?] — (E[X])>.
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Common distributions

e Normal distribution: X ~ N(p,0?) has PDF

f(x) = V;?exp{—ﬁ(x—m.

e E[X] = p and Var[X] = °.
e Bernoulli distribution: X ~ Bernoulli(p) with 0 < p <1 has PMF

p, x=1
PX(X)I{
1—p, x=0

e E[X] = p and Var[X] = p(1 — p).
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Joint distributions

e For two random variables X and Y, their joint cumulative
distribution function is

Fxy(x,y)=P(X <x,Y <y).

e For two discrete random variables X and Y, their joint probability

mass function is
px,y(x,y) = P(X =x,Y =y).

e For two continuous random variable X and Y/, their joint probability
density function is

0 Fx v (x,
() = ZEEed)

so that for a set A € R? and a function g : R> — R,

P((X,Y) € A) = / / Gelbeeay
(x,y)EA

Ble(X. V)] = [ [ ey (x.y)dby. B



Independence

e Random variables X, Y are independent if for any possible values

X, ¥
fx,v(x,y) = fx(x)fy(y), for continuous X,Y,

or px.v(x.y) = px(x)py(y), for discrete X, Y.

e Forany set A= {(x,y):x € A1,y € Ay} C R?, independent
random variables X, Y satisfy that

P((X,Y) € A) = P(X € A)P(Y € Ay).

or events {w : X(w) € A1} and {w : Y(w) € Ay} are independent
events for any A; and A,.
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Exercise: Independence

For example, consider toss two coins consecutively, and X; = 1 if the first
coin heads up, otherwise X; = 0; X, = 1 if the second coin heads up,

otherwise X, = 0.

e P(X1=1,X=1)= P(j{(H, H)’}) %;
o P(X1=1)=P({(H,T),(H,H)}) = 3;
o P(X2=1)=P({(T,H),(H,H)}) = 3.
Thus
1 1 1
P(Xl = 1,X2 = 1): Z = 5 X 5 = P(X1 :1)P(X2 = 1)

Similarly, we can show that
PX1=1,X%=0))=P(X, =1
P(X1=0,X=1)=P(Xy =0
P(X1 =0,X; =0) = P(Xy = 0)P(Xy =0).

s )
& X
o
E &
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Conditional Probability

Let A, B be two events.

e The conditional probability of A given B is defined as:
P(AN B)

P(B)
e If Ais independent of B, we have P(A|B) = P(A), a

P(AnB)  P(A)P(B)
PATEY = "5y ~ ()

P(A|B) =

— P(A).

e Bayes Rule:
P(B|A)P(A)
P(A|B) = .
(i) - 2EA1
e Chain Rule:
P(A10A2ﬂ~-OA,,)
= P(Al)P(Ag‘Al)P(A:g‘AQ n Al) e P(An‘An,1 n---N Al)

27



Example: conditional probability

Consider toss a die once, and we define events

A = {The value is larger than 4}, B = {The value is larger than 2}.

Then

P(A| B) =

P(AN B)
P(B)
P({5,6} N {3,4,5,6})
P({3,4,5,6})

[SYENTNINY
I
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Conditional Distribution

Conditional Density. The conditional probability density function of
continuous random variable X given Y =y is

fX Y(X7y)
x(x|Y =y)= .
(d ) fr(v)
Conditional Expectation. The conditional expectation of X given
Y=yis
BX|Y =y)= [ xfxlY =y)ax 2 g(y)

Conditional Variance. The conditional variance of random variable X
given Y =y is

Var[X|Y = y] = E[(X — E(X|Y = y))’|Y = y] £ h(y).

Both E[X | Y] and Var(X|Y') are random variables, and their
distributions are determined by the distribution of Y.
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Properties of Conditional Distributions

Iterated Expectation. Recall that E(X]|Y) is a function of Y, i.e., a
random variable. The law of iterative expectation states that

E[E(X]Y)] = E(X).

Law of Total Variance. Recall that E(X|Y) and Var(X|Y') are both
random variables that are functions of Y. We have

Var(Y) = E[Var(X|Y)] + Var[E(X|Y)].
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Example: conditional distribution

Assume we throw two six-sided dice.

e What is the probability that the total of two dice will be greater
than 8 given that the first die is a 67

e What is the expectation of the total of two dice given that the first
die is a 67

e What is the variance of the total of two dice given that the first die
isa6?
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Example: conditional distribution

We use X to denote the value for the first die and X5 the value for the
second die.

e What is the probability that the total of two dice will be greater
than 8 given that the first die is a 67

P(Xl + X5 >8,X; = 6)
P(X, =6)

P(X, = 6,% > 2)
P(X1 = 6)

P(X1 =6)P(Xs > 2)
P(X, = 6)

_ 4

=5

P(X1+X2>8|X1:6):

= P(X2 > 2)
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Example: conditional distribution

e What is the expectation of the total of two dice given that the first
die is a 67
Given that X; =6, X; + X, can be 7,8,9,10,11, 12, all with
probability £. Thus
1 1 57
EXi+X | Xi=6]l=7%x=+---+12% - = —.
Xi+ X [ Xy =6]=Txc+-+12x 2 =&
e What is the variance of the total of two dice given that the first die
is a 6?7 Answer: 12

36 °
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Law of large number

Consider i.i.d random variables Xi,--- , X, i.e., independent random
variables with identical distributions, and an arbitrary function g.
Suppose the common expectation E[g(X1)] < oo and common variance
Var[g(X1)] < oo,

Jim . Z g(Xi) = E[g(X1)].

Actually

e E[LS0, g(X)] = Elg(X)].
o Var[L X7, g(X))] = L Var[g(X)].
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Resources




Resources

e Linear algebra:
http://cs229.stanford.edu/summer2019/cs229-1inalg.pdf

e Matrix calculus: https:
//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

e Probability:
http://cs229.stanford.edu/summer2019/cs229-prob.pdf and
All of Statistics by Larry Wasserman.
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