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Linear Algebra



Matrix and Vector

• Vector:

a =

1

2

3

 , b =
[
1 2 3

]
• Matrix:

A =

1 4 7

2 5 8

3 6 9

 .
• Vectorize a matrix:

vec(A) =



1

2

3

4
...

9


.
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Vector Operation

For two column vectors v , u ∈ Rn,

• Inner product: u · v = u>v =
∑n

i=1 uivi .

• Orthogonal vectors: u · v = 0.

• Norm: ‖u‖ =
√
u>u =

√∑n
i=1 u

2
i .

• Euclidean distance: d(u, v) = ‖u − v‖ =
√∑n

i=1(ui − vi )2.
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Matrix Operation

• Transpose. For A ∈ Rm×n, A> is a n ×m matrix:

(A>)ij = Aji .

• Matrix addition. For A ∈ Rm×n, B ∈ Rm×n, C = A + B is a m × n

matrix: for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

Cij = Aij + Bij .

• Matrix Multiplication. For A ∈ Rm×n, B ∈ Rn×p, C = AB is a

m × p matrix: for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

Cij =
n∑

k=1

AikBkj = Ai,: · B:,j
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Matrix Operation

• Matrix inverse. If A is square (n × n), and invertible, then A−1 is

the unique n × n matrix such that

AA−1 = A−1A = I .

• Matrix trace. If A is square (n × n), then its trace is

tr(A) =
n∑

i=1

Aii .

• Frobenius norm: for a matrix A ∈ Rm×n,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√
tr(A>A) = ‖ vec (A)‖.
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Properties of Matrix Operation

• Transpose:

• (AB)> = B>A>.

• (ABC)> = C>B>A>.

• (A+ B)> = A> + B>.

• Multiplication:

• Associative: (AB)C = A(BC).

• Distributive: (A+ B)C = AC + BC .

• Non-commutative: AB 6= BA in general.
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Properties of Matrix Operation

• Inverse:

• (AB)−1 = B−1A−1.

• (ABC)−1 = C−1B−1A−1.

• (A−1)−1 = A.

• (A−1)> = (A>)−1.

• Trace:

• tr(AB) = tr(BA).

• tr(ABC) = tr(CAB) = tr(BCA).
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Special matrices

For A ∈ Rn×n,

• Diagonal matrix: Aij = 0 for any i 6= j .

• Symmetric (Hermitian) matrix: A = A> or Aij = Aji .

• Orthogonal matrix: A> = A−1.

• AA> = A>A = I .

• Rows and Columns are orthogonal unit vectors, namely, for i 6= j ,

Ai,: · Aj,: = 0, A:,i · A:,j = 0,

and for any i ,

Ai,: · Ai,: = 1, A:,i · A:,i = 1.

• Positive semidefinite matrix: for any x ∈ Rn with x 6= 0,

x>Ax =
n∑

i=1

n∑
j=1

Aijxixj ≥ 0.
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Eigenvalues and Eigenvectors

For matrix A ∈ Rn×n, and nonzero vector u ∈ Rn (u 6= 0) such that

Au = λu,

u is an eigenvector of A, and λ is the corresponding eigenvalue.
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Spectral decomposition theorem

If A ∈ Rn×n is a real symmetric matrix, then

A = UΛU> ⇔ A =
n∑

i=1

λiuiu
>
i ⇔ U>AU = Λ

where

• U ∈ Rn×n is an orthogonal matrix whose columns are eigenvectors

of A, i.e., U:,i and U:,j are orthogonal unit eigenvectors for i 6= j .

• Λ is a diagonal matrix whose entries are the corresponding

eigenvalues.

Remark:

• tr(A) =
∑n

i=1 λi .

• Real symmetric A is positive semidefinite ⇔ λi ≥ 0 for any

i = 1, . . . , n.
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Singular Value Decomposition (SVD)

For A ∈ Rm×n, its singular value decomposition is

A = UΣV> ⇔ A =
r∑

i=1

σiuiv
>
i ⇔ U>AV = Σ

where

• U ∈ Rm×r is an orthogonal matrix whose columns {ui}ri=1 are the

left singular vectors;

• V ∈ Rr×n is an orthogonal matrix whose columns {vi}ri=1 are the

right singular vectors;

• Σ ∈ Rr×r is a diagonal matrix whose diagonal elements {σi}ri=1 are

singular values.
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Singular Value Decomposition

Remark:

• r is the rank of matrix A;

• The maximum singular value σmax(A) is called the spectral norm of

A, which we denote as ‖A‖2.

• Connection between SVD and eigen-decomposion.

A = UΣV> ⇒ AA> = UΣ2U>,

A = UΣV> ⇒ A>A = VΣ2V>.

Thus

• The columns of U are eigenvectors of AA>, and the columns of V

are eigenvectors of A>A;

• σ2
i (A) = λi (AA

>) = λi (A
>A).
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Calculus



Univariate Calculus

• Polynomial: ∂
∂x x

n = nxn−1.

• Exponential: ∂
∂x exp(x) = exp(x).

• Logarithm: ∂
∂x log(x) = 1

x .

• Sum: ∂
∂x (f (x) + g(x)) = ∂

∂x f (x) + ∂
∂x g(x).

• Multiplication: ∂
∂x (f (x) · g(x)) = f (x) ∂

∂x g(x) + g(x) ∂
∂x f (x).

• Chain Rule: ∂
∂x (f (g(x))) = f ′(g(x)) · g ′(x).
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Multivariate Calculus

Let f be a function of x1, x2, . . . , xn.

• Partial derivative ∂
∂xi

f (x1, . . . , xn): treat other variables as

constants and take derivative w.r.t. xi .

∂

∂x
f :=


∂f
∂x1

. . .
∂f
∂xn

 ,
∂

∂x>
f :=

(
∂f
∂x1

. . . ∂f
∂xn

)
• Gradient of f with respect to x : ∇x f := ∂

∂x f .

• Hessian matrix of f : H is a n × n matrix with Hij = ∂2

∂xi∂xj
f , or

H =
∂2

∂x∂x>
f .

Let f = (f1, . . . , fm) be a multivariate vector function of x1, . . . , xn.

• Jacobian matrix of f : J is a m × n matrix with Jij = ∂fi
∂xj

. The

i-th row of J is ∂
∂x> fi .
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Multivariate Calculus Rules

Here a and A are vector/matrix that do not depend on x = (x1, . . . , xn)ᵀ.

• ∂
∂x a = 0;

• ∂
∂x a

ᵀx = ∂
∂x x

ᵀa = a;

• ∂
∂x (xᵀa)2 = 2aaᵀx;

• ∂
∂xAx = A>;

• ∂
∂x x

ᵀA = A;

• ∂
∂x x
>Ax = (Aᵀ + A)x.

For a detailed multivariate derivatives list, see

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.
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Example: Least Squares

Lets apply the equations to derive the least squares equations. Suppose

we are given matrices A ∈ Rm×n (for simplicity we assume A is full rank

so that (A>A)−1 exists) and a vector b ∈ Rm such that b 6∈ R(A). In this

situation we will not be able to find a vector x ∈ Rn such that Ax = b,

so instead we want to find a vector x such that Ax is as close as possible

to b, as measured by the square of the Euclidean norm ||Ax − b||22.

Using the fact that ||x ||22 = xᵀx , we have

||Ax − b||22 = (Ax − b)ᵀ(Ax − b) = xᵀAᵀAx − 2bᵀAx + bᵀb.

Taking the gradient with respect to x we have

∇x(xᵀAᵀAx−2bᵀAx+bᵀb) = ∇xx
ᵀAᵀAx−∇x2bᵀAx+∇xb

ᵀb = 2AᵀAx−2Aᵀb.

Setting this last expression equal to zero and solving for x gives the

normal equations x = (AᵀA)−1Aᵀb.
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Probability



Sample space

• Sample space Ω is the set of all possible outcomes of a random

experiment;

• Event A is a subset of Ω, and the collection of all possible events is

denoted as F ;

• Probability measure is a function P : F → R that maps an event

into a real number which indicates the chance at which this event

happens in the experiment.

• A and B are independent events if

P(A ∩ B) = P(A)P(B).

Example: consider tossing a six-sided die,

• Ω = {1, 2, 3, 4, 5, 6};
• A = {1, 2, 3, 4} ⊂ Ω is an event;

• P(A) = 4
6 for an even die.
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Random Variable

• A random variable X is a function X : Ω→ R.

• Discrete random variable can only take countably many values, and

P(X = x) = P({w : X (w) = x}).

• Continuous random variable can take uncountably many values, and

P(a ≤ X ≤ b) = P({w : a ≤ X (w) ≤ b}).

Example: If the die gives value larger than 4, we set X = 1, and

otherwise X = 0.

• P(X = 1) = P({5, 6}) = 2
6 ;

• P(X = 0) = P({1, 2, 3, 4}) = 4
6 .
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Distribution

• A cumulative distribution function (CDF) of a random variable X

(either continuous or discrete) is a function FX : R→ [0, 1] such that

FX (x) = P(X ≤ x).

• A probability mass function (PMF) of a discrete random variable

X is a function pX : R→ [0, 1] such that

pX (x) = P(X = x).

• A probability density function (PDF) of a continuous random

variable is a function fX : R→ R given by the derivative of CDF:

fX (x) =
∂FX (x)

∂x
.

As a result,

P(a ≤ X ≤ b) =

∫ b

a

fX (x)dx .
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Expectation

• For a discret random variable X with PMF pX and an aribitrary

function g : R→ R, g(X ) is also a random variable whose

expectation is given by

E[g(X )] =
∑
x

pX (x)g(x).

• For a continuous random variable X with PDF fX , g(X ) is also a

random variable whose expectation is given by

E[g(X )] =

∫ ∞
−∞

g(x)fX (x)dx .

• For two functions g1 and g2,

E[g1(X ) + g2(X )] = E[g1(X )] + E[g2(X )]
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Variance

The variance of a random variable X is

Var[X ] = E
[
(X − E[X ])2

]
= E[X 2]− (E[X ])2,

and the associated standard deviation is

σ(X ) =
√

Var[X ].
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Exercise: uniform distribution

Consider X ∼ uniform(0, 1) whose PDF is

fX (x) =

{
1, 0 ≤ x ≤ 1

0, otherwise

What’s the expectation and variance of X?

Hint:

• E[X ] =
∫∞
−∞ xfX (x)dx ;

• Var[X ] = E[X 2]− (E[X ])2.
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Common distributions

• Normal distribution: X ∼ N (µ, σ2) has PDF

fX (x) =
1√

2πσ2
exp{− 1

2σ2
(x − µ)2}.

• E[X ] = µ and Var[X ] = σ2.

• Bernoulli distribution: X ∼ Bernoulli(p) with 0 ≤ p ≤ 1 has PMF

PX (x) =

{
p, x = 1

1− p, x = 0

• E[X ] = p and Var[X ] = p(1− p).
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Joint distributions

• For two random variables X and Y , their joint cumulative

distribution function is

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y).

• For two discrete random variables X and Y , their joint probability

mass function is

pX ,Y (x , y) = P(X = x ,Y = y).

• For two continuous random variable X and Y , their joint probability

density function is

fX ,Y (x , y) =
∂2FX ,Y (x , y)

∂x∂y
,

so that for a set A ∈ R2 and a function g : R2 → R,

P((X ,Y ) ∈ A) =

∫∫
(x,y)∈A

fX ,Y (x , y)dxdy ,

E[g(X ,Y )] =

∫∫
g(x , y)fX ,Y (x , y)dxdy .
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Independence

• Random variables X ,Y are independent if for any possible values

x , y

fX ,Y (x , y) = fX (x)fY (y), for continuous X ,Y ,

or pX ,Y (x , y) = pX (x)pY (y), for discrete X ,Y .

• For any set A = {(x , y) : x ∈ A1, y ∈ A2} ⊂ R2, independent

random variables X ,Y satisfy that

P((X ,Y ) ∈ A) = P(X ∈ A1)P(Y ∈ A2).

or events {w : X (w) ∈ A1} and {w : Y (w) ∈ A2} are independent

events for any A1 and A2.

25



Exercise: Independence

For example, consider toss two coins consecutively, and X1 = 1 if the first

coin heads up, otherwise X1 = 0; X2 = 1 if the second coin heads up,

otherwise X2 = 0.

• Ω = {(T ,T ), (H,H), (T ,H), (H,T )}.
• P(X1 = 1,X2 = 1) = P({(H,H)}) = 1

4 ;

• P(X1 = 1) = P({(H,T ), (H,H)}) = 1
2 ;

• P(X2 = 1) = P({(T ,H), (H,H)}) = 1
2 .

Thus

P(X1 = 1,X2 = 1) =
1

4
=

1

2
× 1

2
= P(X1 = 1)P(X2 = 1)..

Similarly, we can show that

P(X1 = 1,X2 = 0) = P(X1 = 1)P(X2 = 0)

P(X1 = 0,X2 = 1) = P(X1 = 0)P(X2 = 1)

P(X1 = 0,X2 = 0) = P(X1 = 0)P(X2 = 0).
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Conditional Probability

Let A,B be two events.

• The conditional probability of A given B is defined as:

P(A|B) =
P(A ∩ B)

P(B)
.

• If A is independent of B, we have P(A|B) = P(A), as

P(A | B) =
P(A ∩ B)

P(B)
=

P(A)P(B)

P(B)
= P(A).

• Bayes Rule:

P(A|B) =
P(B|A)P(A)

P(B)
.

• Chain Rule:

P(A1 ∩ A2 ∩ · · · ∩ An)

= P(A1)P(A2|A1)P(A3|A2 ∩ A1) . . .P(An|An−1 ∩ · · · ∩ A1).
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Example: conditional probability

Consider toss a die once, and we define events

A = {The value is larger than 4},B = {The value is larger than 2}.

Then

P(A | B) =
P(A ∩ B)

P(B)

=
P({5, 6} ∩ {3, 4, 5, 6})

P({3, 4, 5, 6})

=
2
6
4
6

=
1

2
.
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Conditional Distribution

Conditional Density. The conditional probability density function of

continuous random variable X given Y = y is

fX (x |Y = y) =
fX ,Y (x , y)

fY (y)
.

Conditional Expectation. The conditional expectation of X given

Y = y is

E(X |Y = y) =

∫ ∞
−∞

xfX (x |Y = y)dx , g(y)

Conditional Variance. The conditional variance of random variable X

given Y = y is

Var[X |Y = y ] = E[(X − E(X |Y = y))2|Y = y ] , h(y).

Both E[X | Y ] and Var(X |Y ) are random variables, and their

distributions are determined by the distribution of Y .
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Properties of Conditional Distributions

Iterated Expectation. Recall that E(X |Y ) is a function of Y , i.e., a

random variable. The law of iterative expectation states that

E[E(X |Y )] = E(X ).

Law of Total Variance. Recall that E(X |Y ) and Var(X |Y ) are both

random variables that are functions of Y . We have

Var(Y ) = E[Var(X |Y )] + Var [E(X |Y )].
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Example: conditional distribution

Assume we throw two six-sided dice.

• What is the probability that the total of two dice will be greater

than 8 given that the first die is a 6?

• What is the expectation of the total of two dice given that the first

die is a 6?

• What is the variance of the total of two dice given that the first die

is a 6?

31



Example: conditional distribution

We use X1 to denote the value for the first die and X2 the value for the

second die.

• What is the probability that the total of two dice will be greater

than 8 given that the first die is a 6?

P(X1 + X2 > 8 | X1 = 6) =
P(X1 + X2 > 8,X1 = 6)

P(X1 = 6)

=
P(X1 = 6,X2 > 2)

P(X1 = 6)

=
P(X1 = 6)P(X2 > 2)

P(X1 = 6)

= P(X2 > 2) =
4

6
.
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Example: conditional distribution

• What is the expectation of the total of two dice given that the first

die is a 6?

Given that X1 = 6, X1 + X2 can be 7, 8, 9, 10, 11, 12, all with

probability 1
6 . Thus

E[X1 + X2 | X1 = 6] = 7 ∗ 1

6
+ · · ·+ 12 ∗ 1

6
=

57

6
.

• What is the variance of the total of two dice given that the first die

is a 6? Answer: 105
36 .
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Law of large number

Consider i.i.d random variables X1, · · · ,Xn, i.e., independent random

variables with identical distributions, and an arbitrary function g .

Suppose the common expectation E[g(X1)] <∞ and common variance

Var[g(X1)] <∞,

lim
n→∞

1

n

n∑
i=1

g(Xi ) = E[g(X1)].

Actually

• E[ 1n
∑n

i=1 g(Xi )] = E[g(X1)].

• Var[ 1n
∑n

i=1 g(Xi )] = 1
n Var[g(X )].
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Resources

• Linear algebra:

http://cs229.stanford.edu/summer2019/cs229-linalg.pdf

• Matrix calculus: https:

//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

• Probability:

http://cs229.stanford.edu/summer2019/cs229-prob.pdf and

All of Statistics by Larry Wasserman.
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